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Abstract 
The sGloTat sonic environment allows participants to 
originate sound by moving physical objects. It 
encourages novice users to play by naturally gesturing 
with two tangible user interface objects emulating a 
trumpet and tambourine. In this sound space, 
movements by the users generate visual feedback 
projected on the floor in the form of a three-
dimensional rendering of a cone. 

Keywords 
Embodied interaction, tangible user interface, physical 
instrument models. 

Introduction 
The sGloTat sonic environment allows participants to 
originate sound by moving physical objects. It 
encourages novice users to play by naturally gesturing 
with two tangible user interface objects emulating a 
trumpet and tambourine. These tangible interfaces are 
wireless handheld devices embedded with various 
sensors for capturing real-time motion information. We 
also used sensing input to produce visual feedback.  
This visual feedback can enhance the users 
understanding of their virtual instrument and 
simultaneously act as a theatrical component for 
viewers. In this sound space, movements by the users 
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generate visual feedback projected on the floor in the 
form of a three-dimensional rendering of a cone. 

Two related projects came to mind when considering 
our goals. One is the Delay Lama [1], a Virtual Studio 
Technology (VST) instrument. VST instruments have a 
graphical user interface for manipulating audio 
generation in a natural way. The Delay Lama generates 
a sustained tone similar to a monk chanting, and 
displays a 3D model of a cartoon monk whose mouth 
moves with the change in sound properties adjusted 
with simple controls. This is an intuitive and engaging 
interaction. 

Another related project is the MIDI Ironing Board by 
Ranjit Bhatnagar [4]. This is a synthesized musical 
instrument interfaced by ironing on an ironing board 
with embedded heat sensors. The user finds an intuitive 
understanding of the relationship between the 
performed actions and the sounds they make, creating 
as quirky, fun gesture experience. 

The following sections will describe the sensing, 
modeling, and feedback involved in this project. First 
we will discuss the paradigm of physical instrument 
models in an interactive space, followed by the 
description of our tangible interfaces and their senor 
signal processing. Next we discuss how physical 
movements of the user control sounds in the 
environment. We will conclude with a section on 
classifying physical movements to correspond with 
different musical dynamic intentions, followed by our 
observations of using and adjusting our own interactive 
experience. 

Musical Instrument Models in 3D space 
The sGloTat sonic environment allows participants to 
originate sound by moving physical objects. The choices 
for sonic output may range from musical samples that 
can be easily cued by a user to complex physical 
instrument models that may be very expressive but 
more challenging to learn to play.  Using computational 
instrument models that mimic real-world musical 
instruments, as we chose, creates a natural 
understanding of how to manipulate or "play" that 
instrument in an embodied environment such as 
SMALLab. By choosing these outputs thoughtfully, we 
can tailor the interaction for an optimal experience for 
novice and experienced musicians. 

We also used sensing input to produce visual feedback.  
This visual feedback can enhance the users 
understanding of their virtual instrument and 
simultaneously act as a theatrical component for 
viewers. In the sGloTat experience, users see a virtual 
3D cone projected on the floor. The cone changes 
shape based on the sounds of the virtual trumpet. The 
cone mimics a cartoon megaphone, forming an 
engaging sound visualization for the user. As the user 
moves about the space, the cone moves to keep the 
narrow end at the user’s feet. This reinforces the idea 
that the user is the originator of the sound. 

Tangible Interfaces 
Tangible user interfaces (TUIs) support embodied 
interaction and encourage play, especially in a 
musically sonified environment. We have designed two 
smart objects for use with this system. The sensor glow 
stick or sGlowStick is an 8-inch tube easily held in one 
hand (see figure 1) with a pressure sensor used, in this 
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specific implementation, for sound activation and 
volume control.  

 

figure 1. The sGlowStick in hand. The orange light diffusion 

unit is turned off, at the top of the unit. 

The sensor glow Bop-it or sGlowBop-it is a modified 
Bop-it toy [3] that consists of two handles outlining a 
center mass, similar to an aircraft steering wheel (see 
figure 2). Both smart glow objects (sGlobjects) contain 
an Arduino microcontroller, two-axis accelerometer, 
BlueSmiRF Bluetooth module, and battery. The motion 

tracking system in SMALLab, a mixed-reality 
environment [5], uses color detection and infrared (IR) 
detection to track different objects in its space. 
Consequently, the sGlobjects also contain a light 
diffusion unit made of three super-bright orange 
(sGlowStick) or green (sGlowBop-it) light-emitting 
diodes (LEDs) and IR-reflective tape. 

 

figure 2. The sGlowBop-it with green light diffusion and strips 

of IR-reflective tape. The red light inside indicates that the 

Bluetooth module is connected to the computer. 

We chose to use a trumpet instrument model for use 
with the sGlowStick. It’s positioning determines both 
the pitch and vibrato expression in the instrument. The 
sGlowBop-it naturally affords shaking like a 
tambourine, so we mapped its motion to activate a 
shaker-like instrument model whose pitch and volume 
are adjusted by rotating and shaking the object. This 
gives a high level view of the system: tangible objects 
with sensors allowing a participant's motions to 

The pressure sensor is activated 
easily by the thumb or forefinger 
while holding the sGlowStick.   
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generate sounds and visual elements.  We will now go 
more in depth, describing the sensor signal processing, 
the relationships of the gestures and the sounds and 
the modeling of sounds and visual elements. 

Sensor Signal Processing 
We used data from accelerometers (one in each 
tangible interface object) and a pressure sensor (in the 
sGlowStick) for our system.  In this section we will 
describe the signal path and processing of the data 
from the sGlowStick.  The path and processing is 
identical for the sGlowBop-It until the final stages when 
the data is used to control the sound and visuals.  

The data from the sensors is first received by the 
Arduino microcontroller.  The pressure sensor is wired 
to an analog pin of the Arduino.  The Arduino has 
analog to digital converters built in which translate the 
analog values (0 – 5 volts DC) into integer values.  The 
accelerometer outputs pulse width modulation (PWM) 
signals. These signals vary based on the sensed 
accelerations.  To measure these signals it is necessary 
to wire the accelerometer outputs to digital input pins 
on the Arduino and calculate the time of the pulses.  
The raw value of these pulses is an integer that 
increases or decreases in proportion to the measured 
accelerations on the two axes. 

The accelerometer and pressure data are transmitted 
as serial data over a wireless Bluetooth signal to the 
host computer.  The host computer runs a 

Max/MSP/Jitter patch that receives this serial data.  
This patch (Instrument_SCREM_DuoPort_03.mxt) has 
two primary functions.  The first function is to simply 
receive the serial sensor data from the microcontrollers 
and pass it on to other programs that will use this data. 

The second function is to normalize this data so it can 
be used in a standardized form for various programs 
(different instruments, visualizations, games, etc.).  
The normalization process scales the incoming values to 
a range varing between 0.0 and 1.0. (floating point 
values).  To generate these normalized values, it is 
necessary to determine the minimum and maximum 
values of the input from the sensors. 

We accomplish this in our program by activating a 
calibration function that passes data from the sensors 
through objects that identify the minimum and 
maximum values.  These minimum and maximum 
values are then used as variables for the scaling.  When 
the system is initially activated, the user presses on the 
pressure sensor and moves the object through a full 
range of acceleration movements.  Once these 
calibrations are done they can be stored and reset as 
needed to accommodate different sensor devices or 
other variations that might change the data input. This 
ensures that, at the beginning of the experience, the 
sensor infrastructure will respond optimally for its 
specific user. 
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figure 3. The synthesis intrument Max/MSP patch. 

At this point in the signal processing chain we can see 
that the sensors have been read by the Arduino, the 
Arduino has transmitted sensor values to the Max-MSP 
patch, the Max-MSP patch has normalized the sensor 
outputs and finally these values have been sent out for 
use by other programs (see figure 3).   

One program that uses this sensor data is our Max-MSP 
Class_model patch.  This program uses the sensor data 
to define classes based on the character of the 
movements.  The function of this program will be 
described in detail in the section, Texture Modeling.  
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We will continue this section by describing how the 
sensor data is used to generate the sounds of the 
instruments and basic visual feedback. 

The two instruments used for this system were a brass 
instrument and a shaker instrument.  These 
instruments are both from the PerColate Max/MSP 
library [3]. Both of these software instruments 
generate sound using synthesis techniques with control 
variables based on physical parameters of the real 
world physical instruments. The sensor data is scaled to 
match usable ranges for the various parameters to 
which they are tied. 

The brass instrument model has as its inputs the 
following parameters: lip tension, slide deviation, 
vibrato gain and frequency, air pressure, and the length 
of the brass tube.  We controlled the vibrato gain and 
vibrato frequency with the X acceleration value, the 
length of the brass tube with the Y acceleration value 
and the air pressure with the pressure sensor.  The 
other parameters we manually set and left constant for 
the interaction. 

The shaker instrument model has as its inputs the 
following parameters: the number of beads, the 
amount of damping, the energy in the shaker, and the 
resonant frequency.  We controlled this instrument with 
input from the sGlowBop-It and used the X acceleration 
value to control the resonant frequency and the Y 
acceleration value to control the energy or amplitude of 
the shaker.  We filtered the Y acceleration input into 
the shaker model to ignore very subtle shaking.  The 
shaking had to cause an acceleration that exceeded a 
threshold we defined to pass through. 

Finally, we used the sensor inputs to generate visual 
feedback in the form of a 3-D rendering of a cone.  This 
was done by sending OpenGL drawing commands using 
sensor values as variables.   

We used the Y acceleration of the sGlowStick, the same 
variable that controlled the length of the brass tube 
(and therefore the frequency of the brass instrument), 
controls the length of cone.  The pressure sensor, which 
also controls the air pressure of the brass instrument, is 
used to control the diameter of one end of the tube.  
The net effect of these controls is that one can create 
sound and visuals that have a strong visual 
correspondence to one another.  We considered having 
the visual model have a direct correspondence to the 
physical form that would match this instrument model 
but instead elected to go for a more expressive, 
cartoon like model with more emphasis on dramatic 
theatrical visualizations rather than on a model that 
might be more applicable to an educational goal. 

Gestures and Sound 
One of the most immediate design decisions that we 
made involved mapping a change in pitch to a 
particular motion that a user might make.  
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figure 4. The cone mapped with a calm image, pointing away 

from the sGlowStick (orange light, upper left of image). 

Two primary choices were available: a left-right 
rotation (primarily executed with a twist of the wrist) or 
a forward–backward rotation (executed with a 
combination of wrist, elbow and shoulder movements, 
similar to casting a fishing line).   The wide range of 
motion available from the forward-backward rot 

ation provided better resolution and control for the 
instruments with which we worked.  (For other cases 
the left-right rotation might seem like a natural choice 
because it would match the left to right arrangement of 
keys on a keyboard.)  

Having decided to use the forward-backward rotation, 
we then had to decide whether forward (naturally a 
downward motion) or backward (naturally an upward 
motion) should correspond with a higher pitch.  The 

language with which we describe a pitch—“higher” or 
“lower”—strongly suggests the latter. We found that, in 
fact, it felt very unnatural to map the pitch in 
opposition to this linguistic association.  So we assigned 
a backward rotation (an upward motion) to create 
higher pitches and a forward rotation (a downward 
motion) to create lower pitches.  We applied this 
approach to both the brass instrument controlled with 
the sGlowStick and to the shaker instrument played by 
the sGlowBop-it. Careful consideration was taken 
regarding the placement of the two-axis accelerometer 
in order to capture the most natural motions while 
holding the objects. 

Texture Modeling 
A classifier trained by natural movements with the 
smart objects determine whether an action is sharp 
(staccato) or slow and gradual (legato). This dynamic 
classification model determines the visual texture 
wrapped around the virtual cone object depending on 
the gestures performed with the sGlobjects. 

When the model outputs the legato class, a photograph 
of clean water running over smooth river rocks wraps 
around the virtual sound cone. When the model outputs 
the staccato class, a computer generated rendering of 
blackbirds across a white backdrop is displayed instead. 
We chose these two images to promote a visual 
understanding of the long, flowing movements 
associated with legato and the short, granular 
movements associated with staccato (see figures 4 and 
7). 

A digital rendering of the calm river rock 
image mapped to the sound cone. 
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figure 5. The model intakes accelerometer data, creating an 

average from two consecutive instances. 

The model intakes motion information from the two-
axis accelerometers embedded in the sGlowStick and 
sGlowBop-it. The model captures two instances of the 
x-y planar position data, and then determines the 
minimum and maximum between the two pairs. From 
these values, the model produces an x ratio and y ratio 
by dividing the minimums by the maximums (see figure 
5). Finally, the model adds the two ratios and then 
divides by two, sending the average of the two 
instances into a low pass filter.  
 
The low pass filter adds nine instance averages and 
divides by nine to create an event average. We chose 
to filter the information in this manner due to the 
quickness at which we receive the initial motion 
information. The rate of change between the two 
classes was too rapid to provide users with an intuitive 
understanding between legato and staccato.  
 

 
figure 6. A lowpass filter adds nine instance ratios and divides 

by nine to create an event average. 
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Using the filter to capture nine instances to compile a 
single event ratio for the classifier to evaluate 
presented users with comprehensible changes between 
the two classes. Once filtered, the model then sends 
the new event average to the event classifier (see 
figure 6). 
 

figure 7. The cone mapped with a fluttering blackbirds 
at high contrast, expressing the erratic motion of the 
sGlowStick, which is also rapidly changing the shape of 
the displayed cone. 

The event classifier passes the event average through a 
comparative expression to determine the class. The 
comparative expression determines if the event 
average is less than, equal to or greater than 1.33. The 
majority of event averages we observed ranged from 
1.05 to 1.62. Additionally, we observed anomalous 
averages as low as 0.73 and as high as 3.17. We used 
initial user interaction tests with the system to 

determine that 1.33 worked as a baseline value. If the 
comparator determines the event average is less than 
1.33, then the model classifies the event average as 
legato, mapping the river water photo to the virtual 
object. If the comparative determines the event 
average is greater than or equal to 1.33, then the 
model classifies the event average as legato, mapping 
the blackbirds rendering onto the virtual object.  

Observations 
In this section we will describe our design decisions 
based on our practical observations and use of the 
system. We will discuss the visual, tangible, and 
classification considerations we made. 

In our initial plan, we thought to visualize the shape of 
an object through which the generated sound would 
travel. We thought creating a shape whose properties 
change to express how sound would physically be 
amplified would engage the user and create a stronger 
relationship between the gesture performed and the 
sound created. We decided to simplify this concept, 
making instead a cartoon illustration. Similar to a 
cartoon megaphone squawking open and closed, our 
sound cone visualization resembles the flared end of a 
trumpet and a human mouth. 

This is the first application to use the sGlowStick, 
although it had already been in development before this 
use. We decided to duplicate its hardware in the 
sGlowBop-it, which has much different affordances 
already available to us without creating a new form 
factor. Hacked toys promote these alternate uses 
because so much research into their physical usability 
has already taken place. This promotes the expansion 

A digital rendering of the flying blackbird 
image mapped to the sound cone. 
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of these tested designs for other uses, without 
duplicating the original usability research. 

After their initial design and construction, we performed 
testing on our physical interfaces. We used both the 
sGlowStick and the sGlowBop-it in natural and intuitive 
ways, and communicated about how we thought those 
motions should sound. These tests resulted in some 
configuration changes both in the software and 
hardware, including adjusting which instrument 
parameters are controlled by which motions, and 
rotating the sGlowBop-it’s two-axis accelerometer by 
180 degrees from its original position. 

We performed similar testing to train the gesture 
classifier. We each made what we considered to be 
staccato and legato movements then programmed 
those thresholds to react accordingly. 

Conclusions 
Real world instruments are extremely complex and are 
challenging to model.  Interactions with these real 
instruments allow very nuanced, subtle performances.  
Our instruments, as they currently operate, come no 
where near providing this level of subtlety.  They are, 
however, very flexible and allow for the generation of 
performances that are not possible with traditional 
instruments. Our instruments can dynamically 
transform based on programmed settings or actions of 
the user.  These and other sensors can be embedded in 
clothing or in the architecture of a space.  The possible 
modes of implementation are limited only by the 
creativity of the developers. 

We found that our two-axis accelerometer limited the 
natural gestures we wanted to perform with our 

tangible interface objects. In the future we may 
consider the use of a three-axis accelerometer, perhaps 
with gyroscope sensing abilities as well. Battery life is, 
too, a concern for the sGlowStick and sGlowBop-it. 
More research into longer lasting battery configurations 
is necessary. 

Further investigation would also benefit the visual 
feedback of the sGloTaT experience. The use of more 
subtle visual changes according to gesture and 
spacialized sound are two interesting future 
possibilities. 

Overall, we think we have created an engaging and fun 
experience for gestural music creation by people of all 
skill levels. 
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