

sGlobject Trumpet & Tambourine
(sGloTaT)

Abstract
The sGloTat sonic environment allows participants to
originate sound by moving physical objects. It
encourages novice users to play by naturally gesturing
with two tangible user interface objects emulating a
trumpet and tambourine. In this sound space,
movements by the users generate visual feedback
projected on the floor in the form of a three-
dimensional rendering of a cone.

Keywords
Embodied interaction, tangible user interface, physical
instrument models.

Introduction
The sGloTat sonic environment allows participants to
originate sound by moving physical objects. It
encourages novice users to play by naturally gesturing
with two tangible user interface objects emulating a
trumpet and tambourine. These tangible interfaces are
wireless handheld devices embedded with various
sensors for capturing real-time motion information. We
also used sensing input to produce visual feedback.
This visual feedback can enhance the users
understanding of their virtual instrument and
simultaneously act as a theatrical component for
viewers. In this sound space, movements by the users

Copyright is held by the authors, 2007.

This project is part of the Computational Principles for Media Arts

class at Arizona State University in Fall 2007 taught by professors

Hari Sundaram and Todd Ingalls.

Ryan Brotman

Arts, Media & Engineering

Arizona State University

810 S. Forest Mall

Tempe, AZ 85281 USA

Ryan.Brotman@asu.edu

Byron Lahey

Arts, Media & Engineering

Arizona State University

699 S. Mill Ave., Room 395

Tempe, AZ 85281 USA

Byron.Lahey@asu.edu

Rebecca Stern

Arts, Media & Engineering

Arizona State University

699 S. Mill Ave., Room 395

Tempe, AZ 85281 USA

Rebecca.Stern@asu.edu

 2�

generate visual feedback projected on the floor in the
form of a three-dimensional rendering of a cone.

Two related projects came to mind when considering
our goals. One is the Delay Lama [1], a Virtual Studio
Technology (VST) instrument. VST instruments have a
graphical user interface for manipulating audio
generation in a natural way. The Delay Lama generates
a sustained tone similar to a monk chanting, and
displays a 3D model of a cartoon monk whose mouth
moves with the change in sound properties adjusted
with simple controls. This is an intuitive and engaging
interaction.

Another related project is the MIDI Ironing Board by
Ranjit Bhatnagar [4]. This is a synthesized musical
instrument interfaced by ironing on an ironing board
with embedded heat sensors. The user finds an intuitive
understanding of the relationship between the
performed actions and the sounds they make, creating
as quirky, fun gesture experience.

The following sections will describe the sensing,
modeling, and feedback involved in this project. First
we will discuss the paradigm of physical instrument
models in an interactive space, followed by the
description of our tangible interfaces and their senor
signal processing. Next we discuss how physical
movements of the user control sounds in the
environment. We will conclude with a section on
classifying physical movements to correspond with
different musical dynamic intentions, followed by our
observations of using and adjusting our own interactive
experience.

Musical Instrument Models in 3D space
The sGloTat sonic environment allows participants to
originate sound by moving physical objects. The choices
for sonic output may range from musical samples that
can be easily cued by a user to complex physical
instrument models that may be very expressive but
more challenging to learn to play. Using computational
instrument models that mimic real-world musical
instruments, as we chose, creates a natural
understanding of how to manipulate or "play" that
instrument in an embodied environment such as
SMALLab. By choosing these outputs thoughtfully, we
can tailor the interaction for an optimal experience for
novice and experienced musicians.

We also used sensing input to produce visual feedback.
This visual feedback can enhance the users
understanding of their virtual instrument and
simultaneously act as a theatrical component for
viewers. In the sGloTat experience, users see a virtual
3D cone projected on the floor. The cone changes
shape based on the sounds of the virtual trumpet. The
cone mimics a cartoon megaphone, forming an
engaging sound visualization for the user. As the user
moves about the space, the cone moves to keep the
narrow end at the user’s feet. This reinforces the idea
that the user is the originator of the sound.

Tangible Interfaces
Tangible user interfaces (TUIs) support embodied
interaction and encourage play, especially in a
musically sonified environment. We have designed two
smart objects for use with this system. The sensor glow
stick or sGlowStick is an 8-inch tube easily held in one
hand (see figure 1) with a pressure sensor used, in this

 3�

specific implementation, for sound activation and
volume control.

figure 1. The sGlowStick in hand. The orange light diffusion

unit is turned off, at the top of the unit.

The sensor glow Bop-it or sGlowBop-it is a modified
Bop-it toy [3] that consists of two handles outlining a
center mass, similar to an aircraft steering wheel (see
figure 2). Both smart glow objects (sGlobjects) contain
an Arduino microcontroller, two-axis accelerometer,
BlueSmiRF Bluetooth module, and battery. The motion

tracking system in SMALLab, a mixed-reality
environment [5], uses color detection and infrared (IR)
detection to track different objects in its space.
Consequently, the sGlobjects also contain a light
diffusion unit made of three super-bright orange
(sGlowStick) or green (sGlowBop-it) light-emitting
diodes (LEDs) and IR-reflective tape.

figure 2. The sGlowBop-it with green light diffusion and strips

of IR-reflective tape. The red light inside indicates that the

Bluetooth module is connected to the computer.

We chose to use a trumpet instrument model for use
with the sGlowStick. It’s positioning determines both
the pitch and vibrato expression in the instrument. The
sGlowBop-it naturally affords shaking like a
tambourine, so we mapped its motion to activate a
shaker-like instrument model whose pitch and volume
are adjusted by rotating and shaking the object. This
gives a high level view of the system: tangible objects
with sensors allowing a participant's motions to

The pressure sensor is activated
easily by the thumb or forefinger
while holding the sGlowStick.

 4�

generate sounds and visual elements. We will now go
more in depth, describing the sensor signal processing,
the relationships of the gestures and the sounds and
the modeling of sounds and visual elements.

Sensor Signal Processing
We used data from accelerometers (one in each
tangible interface object) and a pressure sensor (in the
sGlowStick) for our system. In this section we will
describe the signal path and processing of the data
from the sGlowStick. The path and processing is
identical for the sGlowBop-It until the final stages when
the data is used to control the sound and visuals.

The data from the sensors is first received by the
Arduino microcontroller. The pressure sensor is wired
to an analog pin of the Arduino. The Arduino has
analog to digital converters built in which translate the
analog values (0 – 5 volts DC) into integer values. The
accelerometer outputs pulse width modulation (PWM)
signals. These signals vary based on the sensed
accelerations. To measure these signals it is necessary
to wire the accelerometer outputs to digital input pins
on the Arduino and calculate the time of the pulses.
The raw value of these pulses is an integer that
increases or decreases in proportion to the measured
accelerations on the two axes.

The accelerometer and pressure data are transmitted
as serial data over a wireless Bluetooth signal to the
host computer. The host computer runs a

Max/MSP/Jitter patch that receives this serial data.
This patch (Instrument_SCREM_DuoPort_03.mxt) has
two primary functions. The first function is to simply
receive the serial sensor data from the microcontrollers
and pass it on to other programs that will use this data.

The second function is to normalize this data so it can
be used in a standardized form for various programs
(different instruments, visualizations, games, etc.).
The normalization process scales the incoming values to
a range varing between 0.0 and 1.0. (floating point
values). To generate these normalized values, it is
necessary to determine the minimum and maximum
values of the input from the sensors.

We accomplish this in our program by activating a
calibration function that passes data from the sensors
through objects that identify the minimum and
maximum values. These minimum and maximum
values are then used as variables for the scaling. When
the system is initially activated, the user presses on the
pressure sensor and moves the object through a full
range of acceleration movements. Once these
calibrations are done they can be stored and reset as
needed to accommodate different sensor devices or
other variations that might change the data input. This
ensures that, at the beginning of the experience, the
sensor infrastructure will respond optimally for its
specific user.

 5�

figure 3. The synthesis intrument Max/MSP patch.

At this point in the signal processing chain we can see
that the sensors have been read by the Arduino, the
Arduino has transmitted sensor values to the Max-MSP
patch, the Max-MSP patch has normalized the sensor
outputs and finally these values have been sent out for
use by other programs (see figure 3).

One program that uses this sensor data is our Max-MSP
Class_model patch. This program uses the sensor data
to define classes based on the character of the
movements. The function of this program will be
described in detail in the section, Texture Modeling.

 6�

We will continue this section by describing how the
sensor data is used to generate the sounds of the
instruments and basic visual feedback.

The two instruments used for this system were a brass
instrument and a shaker instrument. These
instruments are both from the PerColate Max/MSP
library [3]. Both of these software instruments
generate sound using synthesis techniques with control
variables based on physical parameters of the real
world physical instruments. The sensor data is scaled to
match usable ranges for the various parameters to
which they are tied.

The brass instrument model has as its inputs the
following parameters: lip tension, slide deviation,
vibrato gain and frequency, air pressure, and the length
of the brass tube. We controlled the vibrato gain and
vibrato frequency with the X acceleration value, the
length of the brass tube with the Y acceleration value
and the air pressure with the pressure sensor. The
other parameters we manually set and left constant for
the interaction.

The shaker instrument model has as its inputs the
following parameters: the number of beads, the
amount of damping, the energy in the shaker, and the
resonant frequency. We controlled this instrument with
input from the sGlowBop-It and used the X acceleration
value to control the resonant frequency and the Y
acceleration value to control the energy or amplitude of
the shaker. We filtered the Y acceleration input into
the shaker model to ignore very subtle shaking. The
shaking had to cause an acceleration that exceeded a
threshold we defined to pass through.

Finally, we used the sensor inputs to generate visual
feedback in the form of a 3-D rendering of a cone. This
was done by sending OpenGL drawing commands using
sensor values as variables.

We used the Y acceleration of the sGlowStick, the same
variable that controlled the length of the brass tube
(and therefore the frequency of the brass instrument),
controls the length of cone. The pressure sensor, which
also controls the air pressure of the brass instrument, is
used to control the diameter of one end of the tube.
The net effect of these controls is that one can create
sound and visuals that have a strong visual
correspondence to one another. We considered having
the visual model have a direct correspondence to the
physical form that would match this instrument model
but instead elected to go for a more expressive,
cartoon like model with more emphasis on dramatic
theatrical visualizations rather than on a model that
might be more applicable to an educational goal.

Gestures and Sound
One of the most immediate design decisions that we
made involved mapping a change in pitch to a
particular motion that a user might make.

 7�

figure 4. The cone mapped with a calm image, pointing away

from the sGlowStick (orange light, upper left of image).

Two primary choices were available: a left-right
rotation (primarily executed with a twist of the wrist) or
a forward–backward rotation (executed with a
combination of wrist, elbow and shoulder movements,
similar to casting a fishing line). The wide range of
motion available from the forward-backward rot

ation provided better resolution and control for the
instruments with which we worked. (For other cases
the left-right rotation might seem like a natural choice
because it would match the left to right arrangement of
keys on a keyboard.)

Having decided to use the forward-backward rotation,
we then had to decide whether forward (naturally a
downward motion) or backward (naturally an upward
motion) should correspond with a higher pitch. The

language with which we describe a pitch—“higher” or
“lower”—strongly suggests the latter. We found that, in
fact, it felt very unnatural to map the pitch in
opposition to this linguistic association. So we assigned
a backward rotation (an upward motion) to create
higher pitches and a forward rotation (a downward
motion) to create lower pitches. We applied this
approach to both the brass instrument controlled with
the sGlowStick and to the shaker instrument played by
the sGlowBop-it. Careful consideration was taken
regarding the placement of the two-axis accelerometer
in order to capture the most natural motions while
holding the objects.

Texture Modeling
A classifier trained by natural movements with the
smart objects determine whether an action is sharp
(staccato) or slow and gradual (legato). This dynamic
classification model determines the visual texture
wrapped around the virtual cone object depending on
the gestures performed with the sGlobjects.

When the model outputs the legato class, a photograph
of clean water running over smooth river rocks wraps
around the virtual sound cone. When the model outputs
the staccato class, a computer generated rendering of
blackbirds across a white backdrop is displayed instead.
We chose these two images to promote a visual
understanding of the long, flowing movements
associated with legato and the short, granular
movements associated with staccato (see figures 4 and
7).

A digital rendering of the calm river rock
image mapped to the sound cone.

 8�

figure 5. The model intakes accelerometer data, creating an

average from two consecutive instances.

The model intakes motion information from the two-
axis accelerometers embedded in the sGlowStick and
sGlowBop-it. The model captures two instances of the
x-y planar position data, and then determines the
minimum and maximum between the two pairs. From
these values, the model produces an x ratio and y ratio
by dividing the minimums by the maximums (see figure
5). Finally, the model adds the two ratios and then
divides by two, sending the average of the two
instances into a low pass filter.

The low pass filter adds nine instance averages and
divides by nine to create an event average. We chose
to filter the information in this manner due to the
quickness at which we receive the initial motion
information. The rate of change between the two
classes was too rapid to provide users with an intuitive
understanding between legato and staccato.

figure 6. A lowpass filter adds nine instance ratios and divides

by nine to create an event average.

 9�

Using the filter to capture nine instances to compile a
single event ratio for the classifier to evaluate
presented users with comprehensible changes between
the two classes. Once filtered, the model then sends
the new event average to the event classifier (see
figure 6).

figure 7. The cone mapped with a fluttering blackbirds
at high contrast, expressing the erratic motion of the
sGlowStick, which is also rapidly changing the shape of
the displayed cone.

The event classifier passes the event average through a
comparative expression to determine the class. The
comparative expression determines if the event
average is less than, equal to or greater than 1.33. The
majority of event averages we observed ranged from
1.05 to 1.62. Additionally, we observed anomalous
averages as low as 0.73 and as high as 3.17. We used
initial user interaction tests with the system to

determine that 1.33 worked as a baseline value. If the
comparator determines the event average is less than
1.33, then the model classifies the event average as
legato, mapping the river water photo to the virtual
object. If the comparative determines the event
average is greater than or equal to 1.33, then the
model classifies the event average as legato, mapping
the blackbirds rendering onto the virtual object.

Observations
In this section we will describe our design decisions
based on our practical observations and use of the
system. We will discuss the visual, tangible, and
classification considerations we made.

In our initial plan, we thought to visualize the shape of
an object through which the generated sound would
travel. We thought creating a shape whose properties
change to express how sound would physically be
amplified would engage the user and create a stronger
relationship between the gesture performed and the
sound created. We decided to simplify this concept,
making instead a cartoon illustration. Similar to a
cartoon megaphone squawking open and closed, our
sound cone visualization resembles the flared end of a
trumpet and a human mouth.

This is the first application to use the sGlowStick,
although it had already been in development before this
use. We decided to duplicate its hardware in the
sGlowBop-it, which has much different affordances
already available to us without creating a new form
factor. Hacked toys promote these alternate uses
because so much research into their physical usability
has already taken place. This promotes the expansion

A digital rendering of the flying blackbird
image mapped to the sound cone.

 10�

of these tested designs for other uses, without
duplicating the original usability research.

After their initial design and construction, we performed
testing on our physical interfaces. We used both the
sGlowStick and the sGlowBop-it in natural and intuitive
ways, and communicated about how we thought those
motions should sound. These tests resulted in some
configuration changes both in the software and
hardware, including adjusting which instrument
parameters are controlled by which motions, and
rotating the sGlowBop-it’s two-axis accelerometer by
180 degrees from its original position.

We performed similar testing to train the gesture
classifier. We each made what we considered to be
staccato and legato movements then programmed
those thresholds to react accordingly.

Conclusions
Real world instruments are extremely complex and are
challenging to model. Interactions with these real
instruments allow very nuanced, subtle performances.
Our instruments, as they currently operate, come no
where near providing this level of subtlety. They are,
however, very flexible and allow for the generation of
performances that are not possible with traditional
instruments. Our instruments can dynamically
transform based on programmed settings or actions of
the user. These and other sensors can be embedded in
clothing or in the architecture of a space. The possible
modes of implementation are limited only by the
creativity of the developers.

We found that our two-axis accelerometer limited the
natural gestures we wanted to perform with our

tangible interface objects. In the future we may
consider the use of a three-axis accelerometer, perhaps
with gyroscope sensing abilities as well. Battery life is,
too, a concern for the sGlowStick and sGlowBop-it.
More research into longer lasting battery configurations
is necessary.

Further investigation would also benefit the visual
feedback of the sGloTaT experience. The use of more
subtle visual changes according to gesture and
spacialized sound are two interesting future
possibilities.

Overall, we think we have created an engaging and fun
experience for gestural music creation by people of all
skill levels.

Acknowledgements
The authors would like to thank the Computational
Principles for Media Arts class in Arts, Media &
Engineering at ASU for their generous support.

References
[1] AudioNerdz Delay Lama, a VST Max/MSP
instrument

http://www.audionerdz.com/

[2] PeRColate synthesis and signal processing
algorithms for Max/MSP

http://www.music.columbia.edu/PeRColate/

[3] Bop-it electronic game by Parker Brothers,
Milton Bradley, Tiger Electronics, and Hasbro

http://en.wikipedia.org/wiki/Bop_It

[4] Bhatnagar, R. MIDI Ironing Board. Wired.com
2007.

 11�

http://www.wired.com/entertainment/music/news/200
7/09/handmademusic

[5] SMALLab, an ASU AME research project.

http://ame2.asu.edu/projects/ameed/smallab/smallab.
php

